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Abstract

Recasting a many-particle problem in a field-theoretic formalism is nowadays a well-established theoretical tool used by scientists across
a wide spectrum of research areas, ranging from polymer physics to molecular electronic structure theory. It has shown to provide useful results
in many complex situations, where the physics of the system involves many degrees of freedom and a multitude of different length scales, gen-
erally rendering its numerical treatment on a detailed level computationally intractable. To reduce the computational burden, field-theoretic
methodologies usually take advantage of the mean-field approximation. This approximation technique is known to give reliable information
about the system in the high concentration regime, where the interactions are highly screened. However, it is well established that the ranges
of physical interest in most biological and technological applications lie in the intermediate to low concentration regimes, where fluctuations
beyond the mean-field level of approximation become important and dominate the overall physical behavior. In this work we introduce
a new self-consistent field theory for flexible polyelectrolyte chains, in which the monomers interact via a pair potential of screened Coulomb
type, and derive suitable thermodynamic expressions for all concentration regimes. Our approach combines the renormalization concepts of
tadpole renormalization, which has recently been successfully employed in calculations of prototypical neutral polymer and polyelectrolyte
solutions, with the Hartree renormalization procedure. By comparing our approach to experimental measurements as well as alternative theo-
retical approaches, we demonstrate that it provides useful osmotic pressure results for polyelectrolyte systems composed of sodium poly(styrene-
sulfonate) without and with added salt over the whole range of monomer concentrations.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Flexible polyelectrolyte solutions; Self-consistent field theory; Fluctuations
1. Introduction

Charged macromolecules are well known to play a vital
role in nature and technology [1]. Of special importance
among them are a special type of macromolecules called poly-
electrolytes (PEs). They consist of long polymeric chains, pos-
sessing a multitude of ionizable groups along their backbone
that may dissociate in a polar solvent by producing charged
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species [2]. Among the most prominent examples are the
nucleic acids DNA and RNA, which are highly charged biopo-
lyelectrolytes controlling the development and functioning of
living cells. In addition to their central role played in biolog-
ical systems, PEs find widespread use as solubilizing agents,
phase separation agents, and rheological property modifiers
in daily life and technological applications [3]. However, de-
spite of their importance, PE systems still remain only poorly
understood [4,5]. This relates to the fact that their chemistry
and physics is influenced by many controlling parameters,
such as molecular weight, salt concentration, pH of the
solution, etc. Another important characteristic of PE systems
is the coexistence of long-range Coulomb and short-range
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excluded volume interactions. The presence of long-range
interactions generally renders their simulation particularly
difficult because of the need for computationally expensive
techniques, like the Ewald summation [6]. Moreover, their
often highly polymeric nature introduces additional complex-
ity by severely slowing down their equilibration [7].

Since the pioneering works of Edwards [8] and de Gennes
[9], it has been well acknowledged that concepts originally
introduced in quantum field theory (QFT) [10], like e.g.
functional integrals or renormalization group theory, have sub-
stantially contributed to major breakthroughs in the field of
polymer science [7,11,12]. For instance, the groundbreaking
idea of Edwards to use functional integral methods to
investigate the physics of polymers and complex fluids has
led in the last few years to a rapid development of analytical
calculation and computer simulation tools, suitable for de-
scribing structure and properties of a wide variety of important
polymer systems, including polymer melts, blends, and block
copolymers [11e21]. A standard approximation strategy for
functional integral approaches is the mean-field (MF) approxi-
mation, which consists in replacing the many-body interac-
tion term in the action by a term where all bodies of the
system interact with an average effective field. This approach
reduces any multi-body problem into an effective one-body
problem by assuming that the partition function integral of
the model is dominated by a single field configuration. A
major benefit of solving problems with the MF approximation,
or its numerical implementation commonly referred to as the
self-consistent field theory (SCFT), is that it often provides
some useful insights into the properties and behavior of com-
plex many-body systems at relatively low computational cost.
Successful applications of this approximation strategy can be
found for various systems of polymers and complex fluids,
like e.g. strongly segregated block copolymers of high molec-
ular weight, highly concentrated neutral polymer solutions or
highly concentrated block PE solutions [7,11e13]. There are,
however, a multitude of cases for which SCFT provides inac-
curate or even qualitatively incorrect results [7]. These com-
prise neutral polymer or polyelectrolyte solutions in dilute
and semidilute concentration regimes, block copolymers
near their orderedisorder transition, polymer blends near their
phase transitions, etc. In such situations the partition function
integral defining the field-theoretic model is not entirely dom-
inated by a single MF configuration and field configurations
far from the saddle point can make important contributions,
which require the use of more sophisticated calculation tech-
niques beyond the MF level of approximation. One possibility
to face the problem is to calculate higher-order corrections to
the 0th-order MF approximation. Tsonchev et al. developed
a MF strategy including leading-order (one-loop) fluctuation
corrections, to gain new insights into the physics of confined
PE solutions [22]. However, in situations where the MF ap-
proximation is bad many computationally demanding higher-
order corrections to the integral are necessary to get the
desired accuracy. Another possibility is to use Monte Carlo
(MC) algorithms and to sample the full partition function
integral in field-theoretic formulation. However, in a recent
work Baeurle demonstrated that MC sampling in conjunction
with the original field-theoretic representation is impracticable
due to the so-called numerical sign problem [23]. The diffi-
culty is related to the complex and oscillatory nature of the
resulting distribution function, which causes a bad statistical
convergence of the functional integral averages of the desired
thermodynamic and structural quantities. In such cases special
analytical and numerical techniques are necessary to acceler-
ate their statistical convergence [23e27]. To make the meth-
odology amenable for computation, Baeurle proposed to
shift the contour of integration of the partition function inte-
gral through the homogeneous MF solution using Cauchy’s
integral theorem, which was previously successfully employed
by Baer et al. in field-theoretic electronic structure calcula-
tions [28]. Baeurle demonstrated that this technique provides
a significant acceleration of the statistical convergence of the
functional integral averages in the MC sampling procedure
[23,29]. An alternative theoretical tool to cope with strong
fluctuation problems occurring in field theories has been pro-
vided in the late 1940s by the concept of renormalization,
which has originally been devised to calculate functional inte-
grals arising in QFTs [10,30]. In QFTs a standard approxima-
tion strategy is to expand the functional integrals in a power
series in the coupling constant using perturbation theory.
Unfortunately, generally most of the expansion terms turn
out to be infinite, thereby rendering such calculations imprac-
ticable [30]. A way to remove the infinities from QFTs is to
make use of the concept of renormalization [31]. It mainly
consists in replacing the bare values of the coupling parame-
ters, like e.g. electric charges or masses, by renormalized cou-
pling parameters and requiring that the physical quantities do
not change under this transformation, thereby leading to finite
terms in the perturbation expansion. A simple physical picture
of the procedure of renormalization can be drawn from the ex-
ample of a classical electrical charge, Q, inserted into a polariz-
able medium, such as electrolytes. At a distance r from the
charge due to polarization of the medium, its Coulomb field
will effectively depend on a function Q(r), i.e. the effective
(renormalized) charge, instead of the bare electrical charge,
Q [30]. At the beginning of the 1970s, Wilson further pio-
neered the power of renormalization concepts by developing
the formalism of renormalization group (RG) theory, to inves-
tigate critical phenomena of statistical systems [32]. The RG
theory makes use of a series of RG transformations, each of
which consists of a coarse-graining step followed by a change
of scale [7,33,34]. In case of statisticalemechanical problems
the steps are implemented by successively eliminating and re-
scaling the degrees of freedom in the partition sum or integral
that defines the model under consideration. De Gennes used
this strategy to establish an analogy between the behavior of
the zero-component classical vector model of ferromagnetism
near the phase transition and a self-avoiding random walk of
a polymer chain of infinite length on a lattice, to calculate
the polymer excluded volume exponents [9]. Adapting this
concept to field-theoretic functional integrals implies to study
in a systematic way how a field theory model changes while
eliminating and rescaling a certain number of degrees of
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freedom from the partition function integral [7,33]. An alter-
native approach is known as the Hartree approximation or
self-consistent one-loop approximation [35,36]. It takes advan-
tage of Gaussian fluctuation corrections to the 0th-order MF
contribution, to renormalize the model parameters and extract
in a self-consistent way the dominant length scale of the con-
centration fluctuations in critical concentration regimes [7]. In
a more recent work Efimov and Nogovitsin showed that an
alternative renormalization technique originating from QFT,
based on the concept of tadpole renormalization, can be
a very effective approach for computing functional integrals
arising in statistical mechanics of classical many-particle sys-
tems [37,38]. They demonstrated that the main contributions
to classical partition function integrals are provided by low-
order tadpole-type Feynman diagrams, which account for
divergent contributions due to particle self-interaction. The
renormalization procedure performed in this approach effects
on the self-interaction contribution of a charge (like e.g. an
electron or an ion), resulting from the static polarization in-
duced in the vacuum due to the presence of that charge [39].
As evidenced by Efimov and Ganbold in an earlier work
[40,41], the procedure of tadpole renormalization can effec-
tively be employed to remove the related divergences from
the action of the original field-theoretic representation of the
partition function, which leads to an alternative functional
integral representation called the Gaussian equivalent repre-
sentation (GER). They showed that the procedure provides
functional integrals with significantly ameliorated conver-
gence properties for analytical perturbation calculations. In
subsequent works Baeurle applied [23e26,29] the concept
of tadpole renormalization in conjunction with advanced
Monte Carlo (MC) techniques in the grand canonical ensem-
ble, and demonstrated that this approach efficiently accelerates
the statistical convergence of the desired ensemble averages.
Very recently, Baeurle et al. developed effective low-cost
approximation methods based on the tadpole renormalization
procedure, which have shown to deliver useful results for
prototypical polymer and PE solutions [14,15,42].

In this work we develop a new field-theoretic methodology,
which combines the concept of tadpole renormalization with
the Hartree renormalization procedure, for solving statisticale
mechanical problems of PE solutions over the entire range of
monomer concentrations. We demonstrate the effectiveness of
our approach on the example of a system of flexible PE chains,
where the monomers interact via a DerjaguineLandaue
VerweyeOverbeek (DLVO) type of pair potential. We test
the reliability of our method with regard to alternative theoret-
ical approaches as well as experimental data, obtained from
osmotic pressure measurements of sodium poly(styrene-
sulfonate) (NaPSS) PE solutions without and with added salt
in various concentration regimes.

Our paper is organized in the following way. In Section 2
we review the basic derivation of the field theory for flexible
polymer chains, followed by the derivation of the GER formal-
ism in conjunction with the Hartree renormalization proce-
dure. Then, in Section 3 we show applications of the method
on the example of NaPSS PE solutions, and demonstrate
that the Hartree renormalized 0th-order GER methodology is
an effective low-cost approximation strategy for evaluating
thermodynamic information of systems composed of flexible
PE chains over the whole range of monomer concentrations.
Finally, we end our paper with a brief summary and
conclusions.

2. Theory

2.1. Field theory for flexible polymer chains

The standard continuum model of flexible polymers, intro-
duced by Edwards [8], treats a solution composed of n linear
monodisperse homopolymers as a system of coarse-grained
polymers, in which the statistical mechanics of the chains is de-
scribed by the continuous Gaussian thread model [7] and the
solvent is taken into account implicitly. The Gaussian thread
model can be considered as the continuum limit of the discrete
Gaussian chain model, in which the polymers are described as
continuous, linearly elastic filaments. The canonical partition
function of such a system, kept at an inverse temperature
b¼ 1/kBT and confined in a volume V, can be expressed as

Zðn;V;bÞ ¼ 1

n!ðl3
TÞ
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representing the solvent-mediated non-bonded interactions
among the segments, while F0[r] represents the harmonic
stretching energy of the chains. The latter energy contribution
can be formulated as

F0½r� ¼
3kBT

2Nb2

Xn
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0

ds

����drlðsÞ
ds

����2; ð3Þ

where b is the statistical segment length and N the polymeri-
zation index. To derive the basic field-theoretical representa-
tion of the canonical partition function, we next introduce
the segment density operator of the polymer system

brðrÞ ¼ N
Xn

j¼1

Z1

0

ds d
�
r� rj

�
s
��
: ð4Þ

Using this definition, we can rewrite Eq. (2) as

F½r� ¼ 1
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Z
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Next, we transform the model into a field theory by making
use of the definition of the delta functionalZ
Drd

�
r�br�F½r� ¼ F

�br�; ð6Þ

where F½br� is a functional and d½r� br� is the delta functional
given by

d
�
r�br�¼ Z Dw e

i

Z
dr wðrÞ½rðrÞ �brðrÞ�

; ð7Þ

with wðrÞ ¼
P

G wðGÞ exp½iGr� representing the auxiliary
field function. We note in this context that expanding the field
function in a Fourier series implies that periodic boundary
conditions are applied in all directions and that the G vectors
designate the reciprocal lattice vectors of the supercell. Using
the Eqs. (5)e(7), we can recast the canonical partition function
in Eq. (1) in field-theoretic representation, which results in
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can be interpreted as the partition function for an ideal gas of
non-interacting polymers and

Z0 ¼
Z
DR exp½�bU0ðRÞ� ð10Þ

is the path integral of a free polymer in a zero field with elastic
energy

U0½R� ¼
kBT

4R2
g0
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0

ds

����dRðsÞ
ds

����2: ð11Þ

It is worth considering that in the latter equation the unper-
turbed radius of gyration of a chain Rg0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nb2=ð2dÞ

p
, where

the space dimension d¼ 3. Moreover, in Eq. (8) the partition
function of a single polymer, subjected to the field w(R), is
given by

Q½iw� ¼

Z
DR exp

24� bU0

�
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35
Z
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To derive the grand canonical partition function, we use its
standard thermodynamic relation to the canonical partition
function [43],
Xðm;V; bÞ ¼
XN
n¼0

ebmnZðn;V; bÞ; ð13Þ

where Z(n,V,b) is given by Eq. (8). After performing the sum,
this provides the field-theoretic representation of the grand
canonical partition function,

Xðx;V;bÞ ¼ gF

Z
Dw exp½�S½w��; ð14Þ

where

S½w� ¼ 1
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Z
dr dr0 wðrÞF�1ðr� r0Þwðr0Þ � xQ½iw� ð15Þ

is the grand canonical action with Q[iw] defined by Eq. (12)
and the constant
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2
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Moreover, the parameter related to the chemical potential is
given by

x¼ expðbmþ b=2NFð0ÞÞZ0

l3N
�
T
� ; ð17Þ

where Z0 is provided by Eq. (10).

2.2. Gaussian equivalent representation and its
0th-order approximation

To derive the GER of the grand canonical partition func-
tion, let us consider the partition function integral in Eq.
(14) and perform the following shift of the integration contour
by invoking Cauchy’s integral theorem [29]

wðrÞ/wðrÞ þ ijGERðrÞ; ð18Þ

where jGER(r) represents the shifting function of the partition
function integral. We then get
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where Q[i(wþ ijGER)] is defined via Eq. (12). To derive the
GER, we employ the procedure of Efimov and Ganbold [40]
and introduce the Gaussian measure Dm

F
½w� related to the

potential of mean force F,
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DmF½w� ¼ gFDw exp
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as well as the normal product with regard to this measure via
the relations
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Inserting the Eqs. (20) and (21) into Eq. (19), we obtain
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where the normalization constant gD is obtained just be replac-
ing F(G) with D(G) in Eq. (16). Moreover, the normal product
according to this measure is defined similar to Eq. (21), which
implies that

: exp
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with A ¼ expð1=2bNðFð0Þ � Dð0ÞÞÞ. Introducing the Eqs.
(25) and (26) into Eq. (23), we obtain for the grand canonical
partition function
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and the polymer activity z ¼ x expð�b=2NFð0ÞÞ. The basic
idea of the method of GER is to concentrate the main contri-
bution to the partition function integral in a Gaussian measure
related to a modified potential D(r) by employing the concept
of tadpole renormalization [40]. By considering Eq. (20), the
new Gaussian measure can be formulated as
Wint ¼�
1

2bV2

Z
dr dr0 wðrÞ

�
F�1

�
r� r0

�
�D�1

�
r� r0

��
wðr0Þ

� i

bV2

Z
dr dr0 jGERðrÞF�1ðr� r0Þwðr0Þ

þ zAQ
�
i
�
wþ ijGER

��
ð28Þ

and
Q
�
i
�
wþ ijGER

��
¼

Z
DR exp

24� bU0

�
R
�
þN

Z1

0

ds jGERðRðsÞÞ

35 : exp

24� iN

Z1

0

ds wðRðsÞÞ

35 :DZ
DR exp½�bU0½R��

; ð29Þ



4888 S.A. Baeurle, E.A. Nogovitsin / Polymer 48 (2007) 4883e4899
while
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Afterwards, we expand in Eq. (29) the exponential term within
the double dots in a Taylor series up to second order and take
into account the properties of the normal product given in the
Eqs. (21). We then obtain for the exponential term
where the latter contribution contains all expansion terms
beyond second order. Inserting the previous expression into
Eq. (29) and making use of the second relation of the Eqs. (21),
we can rewrite Eq. (28) as
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In order to concentrate the main contribution to the parti-
tion function integral in the Gaussian measure DmD½w�, the lin-
ear and quadratic terms in the field w(r) in Eq. (32) should
vanish. These requirements lead to the so-called GER equa-
tions in the following form:
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which can easily be reformulated as

In Fourier representation the previous equations give
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ds jGERðRðsÞÞ

35Z1

0

FðRðsÞ � rÞ dsZ
DR exp½�bU0½R��

;

Dðr� r0Þ ¼ Fðr� r0Þ � zAN2b�

Z
DR exp

24� bU0

�
R
�
þN

Z1

0

ds jGERðRðsÞÞ

35Z1

0

Z1

0

DðRðsÞ � rÞFðr0 �Rðs0ÞÞ ds ds0Z
DR exp½�bU0½R��

: ð34Þ

jGERðGÞ ¼ �zANbFðGÞ �

Z
DR exp

24� bU0

�
R
�
þN

Z1

0

ds jGERðRðsÞÞ

35Z1

0

exp½iGRðsÞ� dsZ
DR exp½�bU0½R��

;

DðGÞ ¼ FðGÞ � zAN2bFð �GÞDðGÞ �

Z
DR exp

24� bU0

�
R
�
þN

Z1

0

ds jGERðRðsÞÞ

35Z1

0

Z1

0

exp½iGðRðsÞ �Rðs0ÞÞ� ds ds0Z
DR exp½�bU0½R��

: ð35Þ
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As a result, we obtain a new exact field representation of the
grand canonical partition function, namely its Gaussian equiv-
alent representation GER,
with Dð0Þ ¼
P

G DðGÞ and A ¼ expð1=2bNðFð0Þ � Dð0ÞÞÞ.
Moreover, inserting the Eqs. (38) into Eq. (37), we obtain for
the GER0 approximation of the grand canonical free energy
Xðx;V;bÞ ¼ e�bU0
GER

Z
DmD½w� exp

26666664zA

Z
DR exp

24� bU0½R� þN

Z1

0

ds jGERðRðsÞÞ

35 : exp2

24� iN

Z1

0

ds wðRðsÞÞ

35 :DZ
DR exp½�bU0½R��

37777775; ð36Þ
with the 0th-order GER approximation (GER0) of the grand
canonical free energy

U0
GER ¼

1

b
ln

gD

gF

� 1

2b2V2

Z
dr dr0 jGERðrÞF�1ðr� r0ÞjGERðr0Þ

þ 1

2bV2

Z
dr dr0

�
F�1

�
r� r0

�
�D�1

�
r� r0

��
Dðr� r0Þ

� zA

b

Z
DR exp

24� bU0

�
R
�
þN

Z1

0

ds jGERðRðsÞÞ

35
Z
DR exp½�bU0½R��

;

ð37Þ

where the ratio gD=g
F

is given by Eq. (30). It is worth noting
at this stage that the GER provides an optimized represen-
tation of the partition function integral by increasing the
influence of the quadratic term in the action with respect
to the oscillatory interaction functional. As a consequence,
the GER possesses better approximation characteristics
[14,15,42] and statistical convergence properties [23,29],
than the original field-theoretic representation defined in
Eq. (14). In the following we further assume that the shifting
function is homogeneous and translation invariant, i.e.

jGERðrÞ ¼ jGERðG¼ 0Þ ¼ const:; Dðr;r0Þ ¼ Dðr� r0Þ: ð38Þ

Inserting the Eqs. (38) into the Eqs. (35), we can rewrite the
GER equations as

jGERðG¼ 0Þ ¼ �bNFðG¼ 0Þx exp½�b=2NDð0Þ�

� exp
�
NjGER

�
G¼ 0

��
;

DðGÞ ¼ FðGÞ � zAN2bFð �GÞDðGÞexp
�
NjGER

�
G¼ 0

��

�

Z
DR exp½�bU0½R��

Z1

0

Z1

0

exp½iGðRðsÞ �Rðs0ÞÞ� ds ds0Z
DR exp½�bU0½R��

;

ð39Þ
U0
GERðx;V;b;NÞ ¼

1

2b

X
G

ln

	
FðGÞ
DðGÞ



�jGER2ðG¼ 0Þ

2b2F
�
G¼ 0

�
þNjGERðG¼ 0Þ

2bFðG¼ 0Þ
Dð0Þ

� x

b
exp
�
NjGER

�
G¼ 0

��
exp

�
�b

2
NDð0Þ

�
; ð40Þ

where the GER potential D(G) and the shifting function
jGER(G¼ 0) are given by the Eqs. (39), while the chemical
potential related parameter is provided by Eq. (17). Finally,
the GER0 approximation of the grand canonical partition
function can be obtained via

X0
GER ¼ exp½ � bU0

GER�; ð41Þ

where U0
GER is given by Eq. (40).

2.3. Monomer interaction model

To describe the inter-monomer interactions, we make use
of the DerjaguineLandaueVerweyeOverbeek (DLVO) po-
tential [44,45], whose electrostatic part arises as an approxi-
mate solution to the PoissoneBoltzmann equation. By
neglecting its long-range attractive contribution, we can write
it as [44e46]

FðrÞ ¼ z2
MAðk;aÞ

b

	
lB

r



expð�krÞ; ð42Þ

with r ¼ jrj as the distance between the monomer centers and
lB¼ e2/(ekBT ) as the Bjerrum length, where e and e denote,
respectively, the elementary charge and the dielectric constant
of the suspending medium. Moreover, we take into account
that zM is the monomer charge number and

Aðk;aÞ ¼
	

expðka=2Þ
1þ ka=2


2

ð43Þ

the geometrical factor, where a is the radius of the sphere
representing the excluded volume of a monomer. The
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screening parameter k governs the range of interactions and is
given by

k¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4plBI

p
ð44Þ

with the total ionic strength

I ¼
X

i

z2
i hrii; ð45Þ

where the sum runs over all microionic species involved in the
system. In case of a PE system with one type of counterions
with density rm and salt ions with the density rs the ionic
strength can be written as

I ¼ z2
mhrmi þ z2

s hrsi ¼ z2
mNhri þ z2

s hrsi; ð46Þ

where Nhri is the density of counterions with charge number
zm and hrsi is the density of salt ions with charge number z2

s.
Note that, since the potential in Eq. (42) is singular at the or-
igin, we regularize it by the replacement FðrÞ/Fðr þ eÞ with
e as a vanishingly small parameter, which is taken into account
implicitly [13]. The Fourier transform of the interaction poten-
tial is given by

~FðGÞ ¼
Z
V

FðrÞexp½�iGr� dr¼ Aðk;AÞ~Fa¼0ðGÞ; ð47Þ

where

~Fa¼0ðGÞ ¼
4pz2

MlB

b
���Gj2þ k2

�; ð48Þ

with ~FðGÞ ¼ FðGÞV. It is worth noting that, at small to mod-
erate PE concentrations, the geometrical factor Aðk; aÞ is inde-
pendent of k and a, providing

Aðk;aÞz1: ð49Þ

In contrast at larger concentrations it gives approximately

Aðk;aÞz
	

1þ ka=2þ 1=2ðka=2Þ2

1þ ka=2


2

¼
	

1þ 1

2

�
ðka=2Þ2

1þ ka=2

�
2

ð50Þ

with ka/2 [ 1, so that

Aðk;aÞz
	

1þ 1

4
ka


2

z
k2a2

16
: ð51Þ

Therefore, for large k, FðrÞ provides a pair potential of delta-
function type [47].

2.4. Thermodynamic quantities within the GER0
approach

The thermodynamic and structural quantities within the
GER0 approach can be derived in two ways, i.e. via the free
energy route (F-route) and the radial distribution function
route (g(r)-route). In the F-route the standard thermodynamic
relations [43] are used in conjunction with the GER0 approx-
imation of the grand canonical free energy in Eq. (40) or
equivalently the grand canonical partition function in Eq.
(41), while in the g(r)-route the standard thermodynamic ex-
pressions defined via the radial distribution function are em-
ployed [15]. For example, to derive the average density of
polymer chains within the F-route, we make use of the follow-
ing formula:

hri ¼ x

V

1

Xðx;V;bÞ

	
vXðx;V;bÞ

vx



V;b

: ð52Þ

Inserting the GER0 approximation of the partition function,
given in Eq. (41), into Eq. (52), we get

hri0GER ¼�
jGERðG¼ 0Þ

NVbFðG¼ 0Þ

¼ x

V
exp
�
NjGER

�
G¼ 0

��
exp

�
�b

2
ND
�
0
��
: ð53Þ

Next, inserting the previous expression into Eq. (40), we can
reformulate the GER0 approximation of the grand canonical
free energy as

U0
GER ¼�

1

2
N2V2hri0 2

GERFðG¼ 0Þ �Vhri0GER

b

þ 1

2b

X
G

ln
�
1þ bN2Vhri0GERF

�
G
��

� 1

2
N2Vhri0GER

X
G

FðGÞ
½1þ bN2Vhri0GERF

�
G
��: ð54Þ

The osmotic pressure can now easily be derived via the stan-
dard thermodynamic relation

Q0
GER ¼ �U0

GER=V by inserting
into it Eq. (54), which leads to

P0
GER

RT
¼ Cm

N
þ 1

2
BC2

myðG¼ 0Þ

� 1

2NAV

X
G

ln½1þBNCmyðGÞ�

þ 1

2NAV

X
G

BNCmyðGÞ
½1þBNCmyðGÞ�; ð55Þ

where B ¼ ~Fa¼0ðG ¼ 0ÞNAb with NA as the Avogadro con-
stant and yðGÞ ¼ ~FðGÞ=~Fa¼0ðG ¼ 0Þ. Moreover, we have de-
fined the monomolar concentration as Cm ¼ NN�1

A hri with the
average polymer density given by Eq. (53). Next, let us sup-
pose that in the thermodynamic limit, we can perform the re-
placement

P
G /½V=ð2pÞ3

R
dG

�
and rewrite the osmotic

pressure as a sum of a MF contribution and a fluctuation
term F, which yields
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P0
GER

RT
¼ Cm

N
þ 1

2
Aðk; aÞBC2

m �F ; ð56Þ

where

F ¼ 1

2

1

ð2pÞ3NA

Z
dG

�
ln½1þBNCmyðGÞ�

� BNCmyðGÞ
½1þBNCmyðGÞ�



: ð57Þ

Next, we analytically integrate the fluctuation integral (see
Appendix A) and obtain

F ¼ k3

24pNA

n
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þAðk;aÞBNCm

p
ðAðk;aÞBNCm� 2Þ

o
:

ð58Þ

In the regime where Aðk; aÞBNCm is large, the fluctuation term
can be simplified to Fzk3ðAðk; aÞBNCmÞ3=2=ð24pNAÞ, and
we finally get for the osmotic pressure

P0
GER

RT
z
Cm

N
þ 1

2
Aðk;aÞBC2

m �
k3

24pNA

ðAðk;aÞBNCmÞ3=2
: ð59Þ

In case of neutral polymer solutions in the regime of large
monomolar concentrations Cm, the fluctuation term F in the
previous expression is small compared to the MF contribution
1=2 Aðk; aÞBC2

m. This defines the so-called concentrated re-
gime of neutral polymer solutions, whose importance and re-
lation to PE solutions will be discussed in the forthcoming
sections. Moreover, it is worth noting that, in contrast to the
Gaussian fluctuation correction procedure to the MF approxi-
mation or random phase approximation (RPA) [7], the GER0
procedure provides the osmotic pressure formula in Eq. (59)
to lowest order. Higher-order corrections can easily be derived
using the correction procedure described by Eq. (19) in
Ref. [37]. When Cm/N at fixed B, N, Aðk; aÞ and k, the
MF term,

P0
MF

RT
z
Cm

N
þ 1

2
Aðk;aÞBC2

m; ð60Þ

provides the dominant contribution to the osmotic pressure,
and the fluctuation term is asymptotically negligible. This
can be explained by the fact that with increasing concentration
the inter-monomer interactions effectively screen each other
and the MF contribution becomes dominant with respect to
the fluctuations, reflecting the correlated motion of the mono-
mers. Analogously as in the case of neutral polymer solutions
[7], we can reexpress the fluctuation term in Eq. (59) by intro-
ducing a correlation length

z¼ ðk2Aðk;aÞBNCmÞ
�1=2

: ð61Þ

It can easily be demonstrated that z represents the dominant
length scale in a concentrated PE solution over which the
segment density fluctuations are correlated [7]. With the pre-
vious definition, the osmotic pressure can alternatively be writ-
ten as

P0
GER

RT
z
Cm

N
þ 1

2
Aðk;aÞBC2

m�
1

24pNAz3
: ð62Þ

According to de Gennes [48], regions (blobs) of characteristic
volume z3 fluctuate independently because segment density
fluctuations are only correlated over a length scale of order
z. By equipartition, each such region has an energy of order
of the thermal energy kBT, which implies that the fluctuation
contribution to the osmotic pressure in the concentrated
regime should scale as kBT/z3.

2.5. Hartree renormalization

As already mentioned previously, the standard GER0 ap-
proximation of the osmotic pressure, given in Eq. (59), is
only accurate at higher PE concentrations, which usually
does not correspond to the range of physical interest of most
biological and technological applications. At lower PE con-
centrations, this simple approximation procedure does not pro-
vide physically useful results, since the osmotic pressure can
become negative. To solve the problem, we make use of a re-
normalization procedure widely employed in field theory,
which is commonly referred to as the Hartree approximation
[35,36]. We will use this procedure in conjunction with the
GER0 theory, to derive viable expressions for the osmotic
pressure in lower concentration regimes. In essence it consists
in allowing the correlation length in the expression (62) of the
osmotic pressure to be determined self-consistently as a part of
the calculation. To implement this renormalization procedure,
we simply reformulate the osmotic pressure formula in Eq.
(56) as

P0
GER

RT
z
Cm

N
þ 1

2
Aðk;aÞBrC2

m; ð63Þ

where

Br ¼ B�
1

2p2NAAðk;aÞC2
m

ZN

0

dG G2

�
ln½1þBNCmyðGÞ�

� BNCmyðGÞ
½1þBNCmyðGÞ�



: ð64Þ

The Hartree renormalization is now realized by replacing B
with Br inside the fluctuation integral of Eq. (64), which
amounts to the assumption that the dominant length scale
for segment density fluctuations is given by the renormalized
correlation length

zr ¼ ðk2Aðk;aÞBrNCmÞ
�1=2

: ð65Þ
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By evaluating the integral in Eq. (64) with this replacement
through using the same procedure as in Appendix A and con-
sidering that Aðk; aÞBNCm is large, we obtain

Br ¼ B�
1

12pNA

A1=2ðk;aÞB3=2
r N3=2C�1=2

m k3: ð66Þ

Next, we define x ¼ B1=2
r and can easily see that this equation

is a cubic equation in B1=2
r that can be solved analytically. For

large N and B the cubic equation in Eq. (66) provides the real
root as (see Appendix B)

Brzð12pNAÞ2=3
A�1=3ðk;aÞB2=3N�1C1=3

m k�2: ð67Þ

Substitution of this result into Eq. (65) produces the renormal-
ized correlation length

zrzð12pNAÞ�1=3ðA2=3ðk;aÞB2=3C4=3
m Þ

�1=2

: ð68Þ

Analogously, substituting Eq. (67) into Eq. (63) yields the
osmotic pressure as

P0
GER

RT
z
Cm

N
þ ð12pNAÞ2=3

2
A2=3ðk;aÞB2=3N�1C7=3

m k�2: ð69Þ

It can easily be deduced from Eq. (69) that in the dilute regime
of PE solutions, where Cm/0, the ideal gas term is dominant,
which consequently leads to

P0
GER

RT
z
Cm

N
: ð70Þ

In contrast, at higher PE concentration the interaction term is
dominant over the ideal gas term and the osmotic pressure
results in

P0
GER

RT
z
ð12pNAÞ2=3

2
A2=3ðk;aÞB2=3N�1C7=3

m k�2; ð71Þ

where k2¼ 4plBI with I ¼ z2
mNACm þ z2

s NACs and Cs ¼
N�1

A hrsi. To derive an expression for the osmotic pressure of
a system of PEs without salt in the semidilute regime, we
take into account that Cs ¼ 0 in the previous equations and,
thus, get

k2 ¼ 4plBz2
mNACm: ð72Þ

Inserting this expression as well as Aðk; aÞz1 into Eq. (71),
we get the osmotic pressure as

P0
GER

RT
z
ð12pÞ2=3

8plBz2
mN

1=3
A

B2=3N�1C4=3
m ; ð73Þ

where B ¼ z2
M=ðz2

mCmÞ. In this case B is a constant if we re-
place the charge number of the monomers zM by a renormal-
ized charge number zM and assume that, due to the interplay of
chain self-contraction and counterion condensation, each
monomer interact with increasing strength with the cloud of
the surrounding monomers as the concentration of the
monomers grows, which implies that z2
MwNN�1

A hrðrÞi ¼
Cm. Next, by fitting Eq. (73) to the experimental measurement
results of NaPSS PE solutions in the low concentration range,
we deduce that the renormalized z2

MwC11=16
m , which provides

an additional scaling law with exponent 9/8 in the low concen-
tration regime. For a more detailed discussion of the latter is-
sues we refer to Section 3.2. Moreover, we conclude from Eq.
(73) that in the semidilute regime the osmotic pressure is al-
most independent of the polymerization index, since it scales
only as N1/3, in agreement with experimental observations
[4]. By contrast, in the concentrated regime of PEs without
salt, we take into account that Aðk; aÞzk2a2=16 (see Eq.
(51)) and that k¼ keff is concentration independent due to
a complete condensation of the counterions onto the polyions.
Inserting both expressions into Eq. (71), we get the osmotic
pressure as

P0
GER

RT
z
ð192pNAÞ2=3

2

a4=3B2=3N�1C7=3
m

ðkeffÞ2=3
: ð74Þ

We will see in Section 3 that the scaling of the physical param-
eters in this case corresponds to the scaling of neutral polymer
solutions. In a system of PEs with high concentrations of
added salt z2

s NACs[z2
mNACm and, thus, k2z4plBz2

s NACs.
Employing this expression as well as Aðk; aÞz1 to rewrite
Eq. (71), we obtain the osmotic pressure in this latter case as

P0
GER

RT
z

ð12pÞ2=3

8plBz2
s N

1=3
A Cs

B2=3N�1C7=3
m : ð75Þ

Since the grand canonical free energy is directly connected to
the osmotic pressure via U0

GER ¼ �VP0
GER, we can also read-

ily derive the corresponding expressions for the grand canon-
ical free energy. Higher-order corrections to the Hartree
renormalized 0th-order GER (HR-GER0) methodology can
easily be obtained using the correction procedure described
in Ref. [37] and will be presented in a subsequent work.

3. Results

In the following we assess the reliability of our HR-GER0
approach with respect to osmotic pressure experiments on so-
lutions of sodium poly(styrene-sulfonate) NaPSS without and
with added salt. Moreover, we also compare the usefulness of
our method against various theoretical approaches, like scaling
theory and computer simulation results.

3.1. Comparative scaling laws

Scaling theory has mainly been successful in elucidating
the static and dynamic behaviors of neutral polymer and PE
solutions with added salt. To derive scaling laws for PE solu-
tions without salt, let us first analyze the case of neutral poly-
mer solutions. In the dilute regime of neutral polymer
solutions Cm � C�m, where C�m is the so-called overlap concen-
tration specifying the concentration at which the polymer coils
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pack to fill space with unit volume fraction [7]. In this regime
the osmotic pressure can be expressed in form of a virial ex-
pansion. If truncated at quadratic order with regard to concen-
tration, we get

P

RT
z
Cm

N
þA2C2

m; ð76Þ

where A2¼ 4p3/2r(z)NARF
3/N2 is the second virial coefficient

with r(z) as the penetration function, which is a constant in
good solvents. The parameter RF is the Flory radius of the
polymers representing the radius of a single chain in the
good solvent limit, which varies as RFwN3=5. According to
the scaling approach of des Cloizeaux [49], the osmotic
pressure of neutral polymer solutions in the semidilute regime
of concentrations, Cm[C�m, should obey the following
relation

P

RT
wC9=4

m ; ð77Þ

and should be independent of the polymerization index N.
Odijk [50] argued that the same relations should be valid for
semidilute PE solutions in the presence of added salt, provided
the influence of the electrostatic interactions between fixed
charges on the macromolecular chains is taken into account.
He considered a DebyeeHückel (DH) type of interaction po-
tential between the fixed charges with a screening parameter

k2 ¼ 8plBI; ð78Þ

where I is the ionic strength. Odijk gave the osmotic pressure
of semidilute PE solutions in the presence of added salt as

P

RT
w

	
Lt

k



3=4

ðACmÞ9=4
; ð79Þ

where Lt is the total persistence length of the charged macro-
molecules. It has been demonstrated in the Refs. [4,50,51] that
the latter quantity may be approximated by a sum of two
terms, i.e. Lt¼ Lpþ Le¼ Lpþ 1/(4k2A2f2), where Lp is the in-
trinsic persistence length and Le the electrostatic persistence
length, while A represents the linear charge spacing along
the chains and f accounts for the effective charge on the PE
chains. According to counterion condensation theory [52],
one has f¼ 1 if A> lB and f¼ lB/A if A< lB. The scaling ap-
proach to PE solutions without added salt, developed by de
Gennes et al. [53], distinguished three concentration regimes.
At very low concentrations in the dilute regime, these authors
considered that the PEs are on average widely separated and,
if strongly charged, they should be fully stretched because
of the ineffective screening between the polyions. Above a
certain critical concentration in the semidilute regime of PE
solutions, there is a considerable overlap between chains and
a transient network is formed, whose characteristic mean dis-
tance (correlation length) between adjacent chains decreases
with increasing concentration as C�1=2

m . In this case the electro-
static energy per monomer is of order kBT. According to de
Gennes et al., the osmotic pressure contributed from the
polyions scales like the free energy per unit volume and is,
thus, of order

P

RT
wCm: ð80Þ

Odijk considered DH screening as being caused by uncon-
densed counterions only, which implicates that the screening
parameter depends on Cm according to

k2 ¼ 4pACm: ð81Þ

To derive the osmotic pressure, the Eqs. (81) and (79) are com-
bined to yield the scaling relation [51]

P

RT
wA3=8C9=8

m : ð82Þ

We point out that the scaling exponent in the latter relation is
similar to the exponent in expression (80), obtained by de
Gennes et al. [53].

3.2. Analysis and discussion

We start our investigations by comparing the results ob-
tained with the theoretical approaches discussed previously
to osmotic pressure measurements on NaPSS solutions in wa-
ter without and with added salt for various molecular weights
and a temperature of T¼ 298 K. In Fig. 1 we plot the results
obtained for the osmotic pressure as a function of monomolar
concentration in the semidilute concentration range, obtained
with the HR-GER0 approach as well as the scaling theory
from Odijk and de Gennes, in comparison to experimental
data of NaPSS solutions at various molecular weights. We
point out that the concentration unit monomol/l refers to the
concentration of the monomers in solution. We observe that

10-4 10-3 10-2 10-1 100 101

Cm [monomol/l]

10-5

10-4

10-3

10-2

10-1

100
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Π
/(

R
T

) 
[m

ol
/l]

Π/(RT) ~ C4/3

Π/(RT) ~ C9/8Π/(RT) ~ C

M=7*104, Oman

M=1.2*105, Oman

M=3.05*105, Oman

M=7*104, Vesnaver

M=5*105, Chu

M=4*104, Reddy

M=5*105, Reddy

HR-GER0 + Odijk

HR-GER0
de Gennes

Fig. 1. Osmotic pressure of NaPSS solutions in the semidilute regime as a func-

tion of monomolar concentration without added salt at various molecular

weights, obtained with the HR-GER0 approach as well as the Odijk and de

Gennes scaling theories in comparison to experimental measurement results.

Experimental data are taken from Oman [66], Vesnaver and Skerjanc [67],

Chu and Marinsky [68], as well as Reddy and Marinsky [69].
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at low concentrations the power law with an exponent of 9/8,
obtained with the HR-GER0 as well as Odijk approach,
fits the experimental data very well, while the scaling law of
de Gennes with an exponent of 1 deviates increasingly in
the low concentration regime from the experimental results
with NaPSS of high molecular weight. Moreover, we recog-
nize that with increasing concentration there is an accelerated
increase of the osmotic pressure curve and that at a critical
concentration of CICC

m z0:1 monomol=l there is a smooth
crossover between the power law with exponent 9/8 to a power
law with exponent 4/3. We attribute this smooth crossover to
the simultaneous action of the phenomena of screening of
the monomer charges and self-contraction of the stretched
PE chains, leading to a change of the PE shapes. The effect
of electrostatic screening of the monomer charges is under-
taken by the counterions, which form a diffuse double layer
to neutralize the monomer charges of opposite sign [54,55].
The size of this double layer is roughly given by 1/k with k

in the semidilute regime defined by Eq. (72), which implies
that the size is inversely proportional to concentration. This
dependency of the size of the counterion cloud on concentra-
tion can be explained by the fact that only a part of the coun-
terions are condensed onto the sulfonate groups of the NaPSS
chains, forming the so-called Stern layer [56]. The rest of the
counterions contribute as highly mobile ions to the diffuse
double layer surrounding each PE chain, and, therefore, they
are responsible for the concentration dependence of the
screening length k in the semidilute regime. The size of this
double layer is mainly determined by the competition between
the thermal motion of the counterions, which tend to spread
out or homogenize their distribution in order to increase their
entropy, and the electrostatic interactions, which attract the
counterions toward the monomer surfaces while repelling
the monomers with charges of same sign [55]. As pointed
out by Alexander et al. on the example of systems of charged
colloids, the DH potential can be applied to a wide range of
concentrations, if the bare macroion (monomer) charge is suit-
ably renormalized [57,58]. The physical concept behind this
approach relies on the assumption that counterions can tightly
bind (condense) to the fixed surface charges of the macroions
and contribute in this way to neutralize the bare macroion
charges, leading to smaller effective macroion charges. The
counterions will condense onto the charged macroions, until
the charge densities adjacent to the macroions are reduced be-
low a certain critical value [52]. This process is also known as
the phenomenon of counterion condensation and has led in the
late 1960s to the development of the counterion condensation
theory for PE solutions by Manning [52]. However, in case of
PE solutions this effect goes along with the phenomenon of
contraction of the PE chains onto themselves as the concentra-
tion of the monomers grows, resulting in a rapid increase of
the effective monomer charge and monomer interaction. We
attribute the change of power law from exponent 9/8 to 4/3
at the critical concentration CICC to a crossover from outer-
chain contraction (OCC) to inner-chain contraction (ICC),
caused by changing bending properties along the PE chains
due to non-uniform counterion condensation. As recently
shown by Rubinstein et al. [59] using computer simulations
of dilute PE solutions, the center parts of the chains experience
strong stretching due to strong Coulomb repulsion of loosely
attached counterions, which act as a supporting corset. In con-
trast, the counterions at the outer parts of the chains are at-
tached more tightly, leading to a strong screening of the
monomer interactions. As a consequence, at the chain ends
the entropy of forming a kink is favored over the entropy of
elongation due to Coulomb repulsion. This causes that the
outer-chain segments are somewhat more flexible than the in-
ner-chain segments and their probability to contract grows
with increasing concentration. In their molecular dynamics
(MD) simulations Stevens and Kremer [60] observed that
the chains contract significantly due to counterion condensa-
tion before they overlap, forming PEs with horseshoe shape.
They argued that the fraction of condensed counterions in-
creases with polymer concentration, leading to the decrease
of the effective charges on the chains and inducing in this
way their contraction. As pointed out by Rubinstein et al.
[59] as well as Stevens and Kremer [60], the two effects of
non-uniform counterion condensation and counterion-medi-
ated chain self-contraction were in the past always ignored
in simple scaling theories and, thus, may question their valid-
ity. In our HR-GER0 approach these effects are taken into ac-
count by renormalizing the monomer charge number in
a suitable way. This causes that, besides the length scale asso-
ciated with the strength of the Coulomb interaction, additional
length scales associated with both effects are introduced in our
HR-GER0 approach. Next, in Fig. 2 we show the osmotic
pressure as a function of monomolar concentration in the
high concentration regime, in comparison to experimental
measurement results from NaPSS solutions of various molec-
ular weights. We recognize that with increasing concentration
the experimental data agree increasingly well with the power
laws with the exponents 7/3 and 9/4, obtained using the HR-
GER0 approach and scaling theory of des Cloizeaux,
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100

101
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/(
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/l]
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M=4*104, Reddy

M=5*105, Reddy
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des Cloizeaux

Π/(RT) ~ C7/3Π/(RT) ~ C9/4

Fig. 2. Osmotic pressure of NaPSS solutions in the high concentration regime

as a function of monomolar concentration without added salt at various molec-

ular weights, obtained with the HR-GER0 approach and des Cloizeaux scaling

theory in comparison to experimental measurement results. Experimental data

are taken from Bonner and Overton [70] as well as Reddy and Marinsky [69].
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respectively. A good match is achieved at concentrations start-
ing from COVP z 2 monomol/l, which we consider in the fol-
lowing to be the critical concentration of the crossover from
the semidilute to concentrated regime of the NaPSS PE solu-
tions. In the high concentration range the counterions can be
assumed to be almost entirely condensed onto the charged sur-
face of the monomers, thereby screening their interactions ef-
fectively. As a consequence, the inter-monomer interactions
are short-ranged and the screening length becomes indepen-
dent of concentration. Due to the effective and almost uniform
screening of the counterions in this regime, the chains are en-
tirely collapsed onto themselves and form polymer coils, as in
case of neutral polymer solutions [7,61,62]. At the critical
overlap (OVP) concentration COVP, the screened PE coils
pack to fill the entire space with unit volume fraction and,
thus, they can be assumed to overlap with each other. Next,
in Fig. 3 we plot the osmotic pressure of dilute NaPSS solu-
tions as a function of monomolar concentration at various mo-
lecular weights, obtained with our HR-GER0 approach and the
scaling theory of Odijk in comparison to experimental mea-
surement results. We recognize that in the low concentration
range the experimental curves, resulting from solutions of
NaPSS PEs of different molecular weights, show a consider-
able scatter. This is a manifestation of the molecular weight
dependence of the osmotic pressure, reflecting the polymeric
nature of the PE chains in the dilute concentration regime
[4]. Moreover, we visualize in the graph the two curves de-
rived for the semidilute regime, obeying a power law with ex-
ponent 9/8 and 4/3, respectively, as well as the ideal gas law
(i.e. a power-law curve with exponent 1), obtained for a PE
system with N¼ 1 in the dilute regime. We observe that the
experimental curves with the NaPSS PEs of intermediate mo-
lecular weights of M¼ 7� 104 g/mol and M¼ 3.05� 105 g/
mol obey the theoretically derived power law with exponent
9/8 very well. The experimental curve with higher molecular
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Fig. 3. Osmotic pressure of NaPSS solutions in the dilute concentration regime

as a function of monomolar concentration without added salt at various molec-

ular weights, obtained with the HR-GER0 approach as well as Odijk scaling

theory in comparison to experimental measurement results. Experimental

data are taken from Oman [66] and Takahashi et al. [71].
weight NaPSS, i.e. M¼ 3.2� 105 g/mol, deviates increasingly
with decreasing concentration from the power law with expo-
nent 9/8 and approaches the power law with exponent 4/3 at
very low concentrations. In contrast, the experimental curve
of the low-molecular weight NaPSS PEs with M¼ 2�
104 g/mol deviates from the curves of the intermediate molec-
ular weight NaPSS PEs, while being more close to the power
law with exponent 1 than the latter curves. In conclusion, we
deduce from the graph that the HR-GER0 approach correctly
reproduces the molecular weight dependence of NaPSS solu-
tions in the dilute concentration regime and that the ideal
gas law is recovered in the limit of short chain lengths. In
this regime the strongly charged PEs remain extended and
well separated due to the unscreened action of the long-range
Coulombic interactions. As a result, the thermodynamic quan-
tities of strongly charged dilute PE solutions are mainly dom-
inated by single chain properties. In this context, it is also
worth mentioning that the long-range nature of the inter-
monomer interactions causes that the dilute concentration re-
gime is only observed at very low concentrations and, thus,
it is difficult to investigate it experimentally [60,63]. Next,
in Fig. 4 we visualize the osmotic pressure as a function of
monomolar concentration, obtained for solutions of NaPSS
PEs of various molecular weights and at a concentration of
added salt of Cs¼ 0.01 mol/l. We plot the power laws with ex-
ponent 7/3 and 9/4, obtained, respectively, with the HR-GER0
approach and the Odijk scaling theory in comparison to exper-
imental measurement results. We deduce from the graph that
at higher concentrations the results from both theories agree
well with the experimental data. Finally, in Fig. 5 we show
the osmotic pressure as a function of the monomolar concen-
tration for solutions of NaPSS PEs at different molecular
weights over the whole concentration range, obtained from
the HR-GER0 approach as well as experimental measurements
in comparison to the MD simulation results of Stevens and
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Fig. 4. Osmotic pressure of NaPSS solutions as a function of monomolar con-

centration with a concentration of added salt of Cs¼ 0.01 mol/l at various mo-

lecular weights, obtained with the GER0 approach and Odijk scaling theory in

comparison to experimental measurement results. Experimental data are taken

from Koene et al. [72] and Takahashi et al. [71].
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Kremer [57]. The latter authors modeled the PE chains as
freely-jointed bead-spring chains, where the charged mono-
mers interacted via the DH pair potential, while the solvent
was modeled by a dielectric background. The simulations
were performed for systems of DH chains with chain lengths
of N¼ 32 and N¼ 64 beads, as well as for low densities with
a chain length of N¼ 128 beads, while the number of DH
chains was either 8 or 16. We mapped the MD simulation
results onto systems of NaPSS PEs in water according to the
procedure proposed by Stevens and Kremer [57]. We see that,
similar to the HR-GER0 results, the MD simulation results of
Stevens and Kremer reproduce the experimental osmotic pres-
sure curves well over the entire concentration range. However,
it is worth noting that MD simulations with systems of moder-
ate to high PE concentrations can only be achieved for PEs of
short chain lengths. This severely limits the scope of application
of the MD methodology, since systems of biological and tech-
nological interest generally consist of longer PE chains possess-
ing prohibitively long equilibration times [7].

4. Summary and conclusions

In summary, we have demonstrated in this article on the ex-
ample of a model of flexible PE chains, where the monomers
interact via a DLVO-type of pair potential, that the Hartree re-
normalized GER0 approach is an efficient novel low-cost ap-
proximation method for calculating functional integrals of
sophisticated polymer chain models beyond the MF level of
approximation. In particular, we have demonstrated by com-
paring our theoretical approach to experimental measurements
that it provides reliable results of the thermodynamic osmotic
pressure over the whole range of monomer concentrations. To
solve the multiple length scale problem arising in the semidi-
lute regime, we derive an appropriate functional form of the
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Fig. 5. Osmotic pressure of NaPSS solutions as a function of monomolar con-

centration over the entire concentration range without added salt and at various

molecular weights, obtained with the HR-GER0 approach as well as using the

MD method by Stevens and Kremer [57] in comparison to experimental mea-

surement results. Experimental data are taken from Oman [66], Vesnaver and

Skerjanc [67], Chu and Marinsky [68], as well as Reddy and Marinsky [69].
quantity by suitably renormalizing the monomer charge num-
ber, which takes into account the interplay of non-uniform
counterion condensation and counterion-mediated chain self-
contraction. As a consequence, the correlation length of seg-
ment density fluctuations becomes concentration dependent
and a crossover from outer-chain contraction OCC to inner-
chain contraction ICC takes place with increasing monomolar
concentration, leading to PE chains with horseshoe shape. In
the concentrated regime we show that the osmotic pressure
is dominated by excluded volume interactions and, therefore,
the scaling behavior is similar to neutral polymer solutions,
as demonstrated by computer simulation calculations
[57,63]. Moreover, it is also worth pointing out that our Har-
tree renormalized GER0 theory possesses the advantage over
traditional scaling theories that it is able to predict not only
the slopes, but also the prefactors of the thermodynamic prop-
erties, as well as to provide a suitable framework for develop-
ing systematic higher-order scaling laws, as will be
demonstrated in subsequent investigations. Finally, it is worth
considering that our approach, in contrast to conventional sim-
ulation methods like e.g. MD, permits to deliver useful results
for PE systems with long polymer chains in non-dilute concen-
tration regimes, as needed in many applications of biological
and technological interest. In conclusion, we believe that the
Hartree renormalized GER0 approach can become an appeal-
ing alternative to conventional computer simulation tools and
scaling approaches in cases, where the latter approaches fail to
provide useful results. Our future efforts will therefore concen-
trate on applying the Hartree renormalized GER0 methodol-
ogy, to derive scaling laws of sophisticated polymeric
systems like the ones occurring in biomaterials [64] and com-
plex foods [65]. A further work will deal with the study of PE
solutions on a more fundamental level, taking into account the
degrees of freedom of the counterions and salt ions explicitly
and describing their interactions via the Coulomb potential.
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Appendix A. Analytical evaluation of the fluctuation
integral

To perform the analytical integration of the fluctuation in-
tegral in Eq. (57), we transform it in polar coordinates and
obtain

F ¼ 1

4p2NA

ZN

0

dG G2

�
ln½1þBNCmyðGÞ�

� BNCmyðGÞ
½1þBNCmyðGÞ�



; ð83Þ

where G ¼ jGj. This expression can be rewritten as
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F ¼ 1

4p2

ZN

0

dðG3=3Þ
�

ln½1þBNCmyðGÞ� � BNCmyðGÞ
½1þBNCmyðGÞ�



:

ð84Þ

Next, we use the formula
R

u dv ¼ uv�
R

v du to rewrite
Eq. (84) and get

F ¼ 1

4p2NA

�
G3

3

�
ln½1þBNCmyðGÞ� � BNCmyðGÞ

½1þBNCmyðGÞ�

�
G¼N

G¼0

� 1

4p2NA

ZG¼N

G¼0

d

�
ln½1þBNCmyðGÞ� � BNCmyðGÞ

½1þBNCmyðGÞ�

�
G3

3

¼� 1

4p2NA

ZG¼N

G¼0

d

�
ln½1þBNCmyðGÞ� � BNCmyðGÞ

½1þBNCmyðGÞ�

�
G3

3

¼� 1

4p2NA

ZG¼N

G¼0

dG

�
BNCmðdyðGÞ=dGÞ
½1þBNCmyðGÞ� �

BNCmðdyðGÞ=dGÞ
½1þBNCmyðGÞ�

þ B
2N2C2

myðGÞðdyðGÞ=dGÞ
½1þBNCmyðGÞ�2

�G3

3

¼� 1

12p2NA

ZG¼N

G¼0

dG

�
B2N2C2

myðGÞðdyðGÞ=dGÞG3

½1þBNCmyðGÞ�2


: ð85Þ

Next, inserting

yðGÞ ¼ k2Aðk;aÞ
G2þ k2

ð86Þ

and

dyðGÞ
dG

¼� k2Aðk;aÞ
½G2þ k2�2

2G ð87Þ

into Eq. (85), we obtain

F ¼� 1

12p2NA

ZG¼N

G¼0

dG

(B2N2C2
m

h
k2Aðk;aÞ
G2þk2

ih
� k2Aðk;aÞ
½G2þk2�2

2G
i
G3

½1þBNCm½k
2Aðk;aÞ
G2þk2 ��

2

)

¼ 1

6p2NA

B2N2C2
mk4A2ðk;aÞ

�
ZG¼N

G¼0

dG

(
G4

½G2þ k2�½G2þ ðk2 þBNCmk2Aðk;aÞÞ�2

)
:ð88Þ

To solve this integral, we use the following integral relation

ZN

0

x4

ðx2þmÞðx2 þ nÞ2
dx ¼ p

4ðm� nÞ2
h
2m3=2þ

ffiffiffi
n
p
ðn� 3mÞ

i
ð89Þ

and get for the fluctuation integral
F ¼ k3

24pNA

n
2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þAðk;aÞBNCm

p
ðAðk;aÞBNCm � 2Þ

o
:

ð90Þ

Appendix B. Solving the cubic equation of the Hartree
renormalized GER0 approach

In order to solve Eq. (66), we rewrite it in a cubic equation
of the form

x3þ qx2þ rxþ s¼ 0 ð91Þ

by defining x ¼ B1=2
r and

q¼ 12pNA

A1=2ðk;aÞN3=2C�1=2
m k3

; r ¼ 0; s¼�Bq: ð92Þ

Cubic equations possess three possible solutions, from which
at least one is real. The real solution is given by

x1 ¼ Sþ T� 1

3
q; ð93Þ

where

S¼ ðRþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3þR2

p
Þ

1=3

; T ¼ ðR�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q3 þR2

p
Þ

1=3

; ð94Þ

with

Q¼ 1

9

�
3r� q2

�
; R¼ 1

54

�
9qr� 27s� 2q3

�
: ð95Þ

Using the coefficients given in the Eqs. (92), we get for the
previous expressions

Q¼�1

9
q2; R¼ q

54

�
27B� 2q2

�
; ð96Þ

and

S¼
	

q

54
ð27B� 2q2Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

93
q6þ q2

542
ð27B� 2q2Þ2

r 
1=3

;

T ¼
	

q

54
ð27B� 2q2Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� 1

93
q6 þ q2

542
ð27B� 2q2Þ2

r 
1=3

: ð97Þ

Considering that q/0 for N/N, the previous equations
provide

S¼ ðqBÞ1=3
; T ¼ 0: ð98Þ

Thus, for large B, we obtain

x1zS¼ ðqBÞ1=3 ð99Þ

or

Br ¼ x2
1zðqBÞ2=3

: ð100Þ
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Next, inserting q of Eq. (92) in Eq. (100), we finally get

Brzð12pNAÞ2=3

	
B2=3C1=3

m

A1=3ðk;aÞNk2



: ð101Þ
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